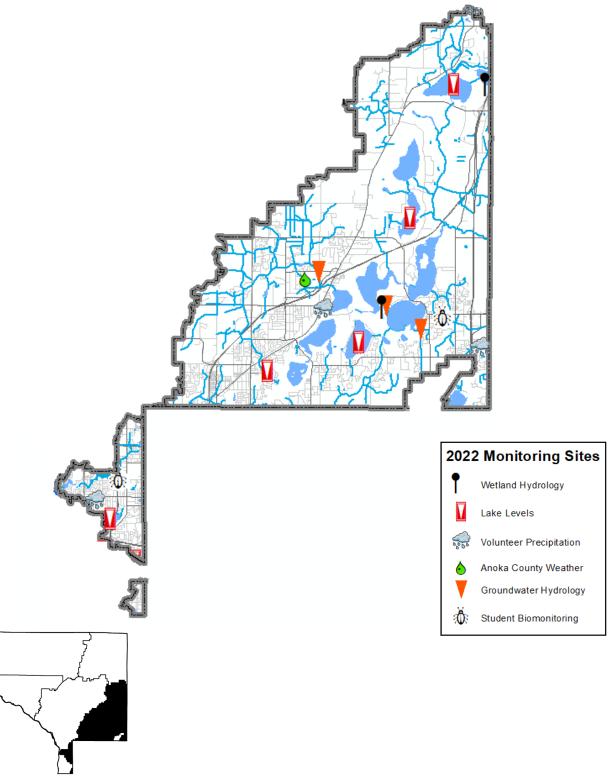

# **Excerpt from the 2022 Water Almanac**

# Chapter 5: Rice Creek Watershed



**Prepared by the Anoka Conservation District** 


# Table of Contents

| Recommendations                                    | 3    |
|----------------------------------------------------|------|
| 2022 Water Monitoring Sites: Rice Creek Watershed  | 4    |
| Lake Level Monitoring                              | 5    |
| Wetland Hydrology                                  | 8    |
| Stream Water Quality – Biological Monitoring       | . 11 |
| Clearwater Creek                                   | . 12 |
| Rice Creek                                         | . 14 |
| Water Quality Grant Administration                 | . 16 |
| Anoka County Water Resource Outreach Collaborative | . 17 |

## Recommendations

- > Continue to install cost effective projects identified in preciously completed Subwatershed Retrofit Analyses. Projects identified in these studies would be ideal candidates for targeted outreach about available cost share funds. In many cases, projects are already sited, and the water quality benefits of potential projects have already been modelled.
- ➤ Continue the biomonitoring program with area schools at Rice Creek and Clearwater Creek. This program provides dual benefits in contributing to a long-term bio-indicator dataset as well as educating local youth.
- Continue work to improve the ecological health of Clearwater, Hardwood, and Rice Creeks. Clearwater Creek is designated as impaired for aquatic life based on fish and invertebrate IBIs. Hardwood Creek is impaired based on invertebrate data and low dissolved oxygen. Rice Creek is impaired for both fish and invertebrate IBIs downstream of Baldwin Lake in Anoka County.
- **Continue efforts to reduce road salt use.** Chlorides are pervasive throughout shallow aquifers and the streams that feed them.

# 2022 Water Monitoring Sites: Rice Creek Watershed



# Lake Level Monitoring

**Partners:** RCWD, ACD, Volunteers

**Description:** Weekly water level monitoring was conducted by local volunteers using staff gages

installed in each lake. Staff gages were installed by the Anoka Conservation District and surveyed by the MN DNR. VolunteerThe past five and twenty five years of data

for each lake are illustrated below, and all historical data are available on the

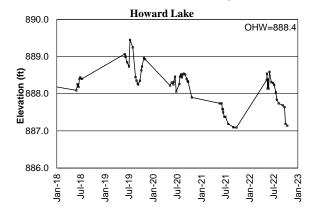
Minnesota DNR website using the "LakeFinder" feature (https://www.dnr.state.mn.us/lakefind/index.html).

**Purpose:** To understand lake hydrology, including the impact of climate or other water budget

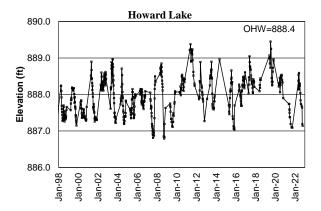
changes. These data are useful for regulatory, building/development, and lake

management decisions.

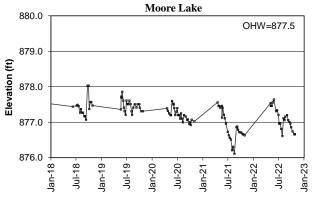
**Locations:** Howard Lake, Moore Lake, Reshanau Lake, Rondeau Lake, and Golden Lake


**Results:** In 2022, lake levels started near average and declined throughout the season. Anoka

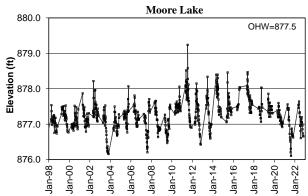
County experienced drought from June through the fall. Howard Lake reached its lowest level since 2015, Reshanau its lowest since 2013, and Moore Lake had its lowest water levels on record. Golden Lake water levels were the second lowest ever recorded, behind 1989. A long-time volunteer suffered a medical emergency and no readings were taken on Rondeau Lake in 2022. Outreach will be completed in the


spring to find a replacement volunteer for 2023.

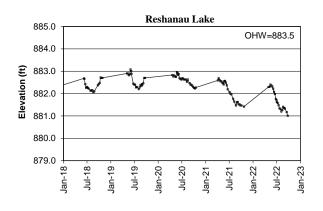
The Ordinary High Water Level (OHW) is listed for each lake on the corresponding graphs below. Any work performed below this elevation requires a DNR permit.


#### **Howard Lake Levels – last 5 years**

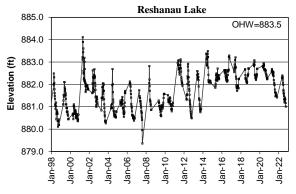



### Howard Lake Levels – last 25 years

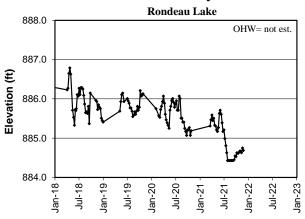



#### Moore Lake Levels – last 5 year

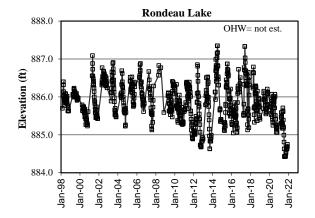



#### Moore Lake Levels – last 25 years



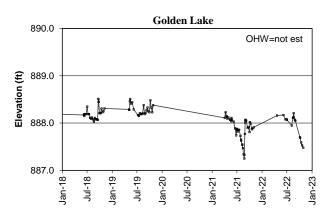

#### Reshanau Lake Levels – last 5 years

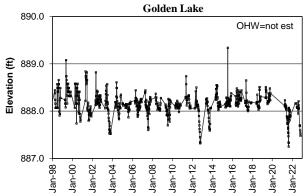



#### Reshanau Lake Levels – last 25 years



#### Rondeau Lake Levels – last 5 years





#### Rondeau Lake Levels – last 25 years



## Golden Lake Levels – last 5 years

## Golden Lake Levels – last 25 years





| Lake   | Year | Average | Min    | Max    |
|--------|------|---------|--------|--------|
| Howard | 2018 | 888.30  | 888.09 | 888.44 |
|        | 2019 | 888.77  | 888.25 | 889.45 |
|        | 2020 | 888.34  | 887.90 | 888.54 |
|        | 2021 | 887.40  | 887.09 | 887.74 |
|        | 2022 | 888.02  | 887.14 | 888.59 |

| Lake          | Year | Average | Min    | Max    |
|---------------|------|---------|--------|--------|
| Moore 2018 87 |      | 877.44  | 877.07 | 878.03 |
|               | 2019 | 877.47  | 877.21 | 877.86 |
|               | 2020 | 877.22  | 876.92 | 877.60 |
|               | 2021 | 876.88  | 876.11 | 877.56 |
|               | 2022 | 877.10  | 876.61 | 877.64 |

| Lake   | Year | Average | Min    | Max    |
|--------|------|---------|--------|--------|
| Golden | 2017 | 888.17  | 888.00 | 888.65 |
|        | 2018 | 888.20  | 888.03 | 888.51 |
|        | 2019 | 888.30  | 888.15 | 888.51 |
|        | 2021 | 887.88  | 887.25 | 888.23 |
|        | 2022 | 887.95  | 887.48 | 888.21 |

| Lake     | Year | Average | Min    | Max    |
|----------|------|---------|--------|--------|
| Reshanau | 2018 | 882.38  | 882.06 | 882.72 |
|          | 2019 | 882.58  | 882.20 | 883.08 |
|          | 2020 | 882.61  | 882.23 | 882.95 |
|          | 2021 | 882.08  | 881.42 | 882.69 |
|          | 2022 | 881.70  | 881.01 | 882.40 |

## Wetland Hydrology

**Partners:** RCWD, ACD

**Description:** Continuous groundwater level monitoring within wetland areas. Countywide, the

Anoka Conservation District maintains a network of 23 wetland hydrology

monitoring stations.

**Purpose:** To provide an understanding of wetland hydrology, including the impact of climate

and land use change. These data set aid in the delineation of nearby wetlands by documenting hydrologic trends including the timing, frequency, and duration of

saturation.

**Locations:** Lamprey Reference Wetland, Rice Creek Reference Wetland

**Results:** See the following pages.

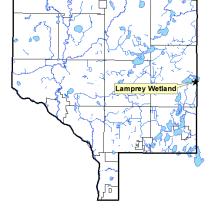
## **Rice Creek Watershed Wetland Monitoring Sites**



## LAMPREY REFERENCE WETLAND

Lamprey Pass Wildlife Management Area, Columbus

### **Site Information**


**Monitored Since:** 1999

Wetland Type: 4

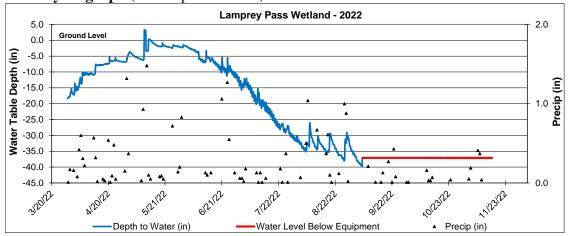
Wetland Size: ~0.5 acres

**Isolated Basin:** Yes **Connected to a Ditch:** No

**Surrounding Soils:** Braham loamy fine sand



#### **Soils at Well Location:**


| Horizon                | Depth | Color    | Texture         | Redox                    |
|------------------------|-------|----------|-----------------|--------------------------|
| A                      | 0-9   | 10yr 2/1 | Fine Sandy Loam | -                        |
| AB                     | 9-19  | 10yr 2/1 | Fine Sandy Loam | 2% 10yr 5/6              |
| $\mathbf{B}\mathbf{w}$ | 19-35 | 10ry 3/1 | Loam            | 2% 10ty 5/4              |
| 2C1                    | 35-42 | 5y 5/2   | Clay Laom       | 5y 3/1 Organic Streaking |
| 2C2                    | 42-48 | 2.5y 5/1 | Sandy Loam      | 2.5y 5/6                 |

### **Vegetation at Well Location:**

| Scientific                  | Common             | % Coverage |
|-----------------------------|--------------------|------------|
| Carex pennsylvanica         | Pennsylvania Sedge | 50         |
| Cornus stolonifera (S)      | Red-osier Dogwood  | 20         |
| Fraxinus pennslyvanicum (T) | Green Ash          | 40         |
| Xanthoxylum americanum      | Pricly Ash         | 20         |
| Bare Ground                 |                    | 20         |

**Other Notes:** Wetland is within a state WMA and the boring is located at a wetland boundary. In 2022, Anoka County was abnormally dry or experiencing a state of drought, water levels fell below the equipment in the fall season.

#### **2022 Hydrograph** (Well depth 40 inches)



## RICE CREEK REFERENCE WETLAND

Rice Creek Chain of Lakes Regional Park, Lino Lakes

### **Site Information**

Monitored Since: 1996
Wetland Type: 7

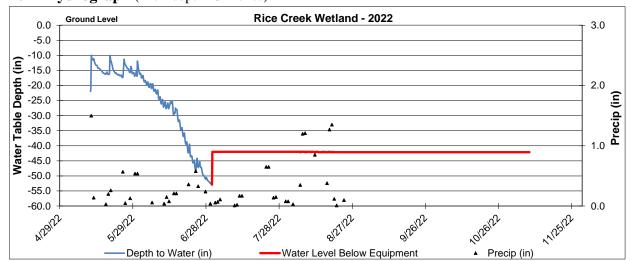
**Wetland Size:** ~0.5 acres

**Isolated Basin:** Yes **Connected to a Ditch:** No

Surrounding Soils: Nessel fine sandy loam and

Blomford loamy fine sand

#### **Soils at Well Location:**


| Horizon | Depth | Color    | Texture    | Redox       |
|---------|-------|----------|------------|-------------|
| A       | 0-12  | 10yr 3/1 | Sandy Loam | -           |
| Ab      | 12-16 | 10yr 2/1 | Sandy Loam | -           |
| Bg1     | 16-21 | 10yr4/1  | Sandy Loam | -           |
| Bg2     | 21-35 | 10yr5/2  | Sandy Loam | 5% 10yr 5/6 |
| 2Cg     | 35-42 | 2.5y 5/2 | Silt Loam  | 5% 10yr 5/6 |

#### **Vegetation at Well Location:**

| Scientific             | Common         | % Coverage |
|------------------------|----------------|------------|
| Rubus strigosus        | Raspberry      | 30         |
| Onoclea sensibilis     | Sensitive Fern | 20         |
| Fraxinus pennsylvanica | Green Ash      | 40         |
| Amphicarpa bracteata   | Hog Peanut     | 20         |

**Other Notes:** Well is located at wetland boundary. In 2022, Anoka County was abnormally dry or experiencing a state of drought most of the year. Water levels were below the equipment the majority of the year.

#### **2022 Hydrograph** (Well depth 45 inches)





## Stream Water Quality – Biological Monitoring

Partners: ACD, Totino Grace High School, Forest Lake Area Learning Center

**Description:** This program uniquely combines environmental education with useful water quality

stream monitoring. Under the supervision of ACD staff, high school science classes collect aquatic macroinvertebrates from a specific section of stream, identify the macroinvertebrates down to the family level, and use the biotic index to score overall water and habitat quality. These methods are based upon the knowledge that different families of macroinvertebrates have different water and habitat quality requirements. The families collectively known as EPT (Ephemeroptera, or mayflies; Plecoptera, or stoneflies; and Trichoptera, or caddisflies) are generally pollution intolerant, while other families can thrive in low quality water. Therefore, a census of stream

other families can thrive in low quality water. Therefore, a census of stream macroinvertebrates provides important information regarding overall stream health.

**Purpose:** To assess stream quality through biological monitoring while providing an

environmental educational service to the community.

**Locations:** Clearwater Creek at Centerville City Hall, Rice Creek at Locke Park

#### **Data Interpretation**

Consider all biological indices of water quality together rather than each individually, since each gives only a partial summary of a stream's condition. Compare the numbers to county-wide averages. This gives some sense of what might be expected for other streams located in a similar landscape, but does not necessarily reflect what might be expected of a minimally impacted stream. Some key numbers to look for include:

# Families Number of Invertebrate families. Higher values indicate better quality.

EPT Number of families of the generally pollution-intolerant orders.

Ephemeroptera, Plecopter, Trichoptera. Higher numbers indicate better

stream quality.

<u>Family Biotic Index (FBI)</u> An Index that utilizes known pollution tolerances for each family.

| FBI        | Stream Quality Evaluation |
|------------|---------------------------|
| 0.00-3.75  | Excellent                 |
| 3.76-4.25  | Very Good                 |
| 4.26-5.00  | Good                      |
| 5.01-5.75  | Fair                      |
| 5.76-6.50  | Fairly Poor               |
| 6.51-7.25  | Poor                      |
| 7.26-10.00 | Very Poor                 |

#### Population Attributes Metrics

**% EPT** compares the number of organisms in the EPT orders (Ephemeroptera, Plecoptera, Trichoptera) to the total number of organisms in the sample. A high percent of EPT is good.

% **Dominant Family** measures the percentage of individuals in the sample that are in the sample's most abundant family. A high percentage is usually bad because it indicates low evenness (one of a few families dominate, and all others are rare).

### Clearwater Creek

At Centerville City Hall, Centerville

#### **Monitored Since**

1999

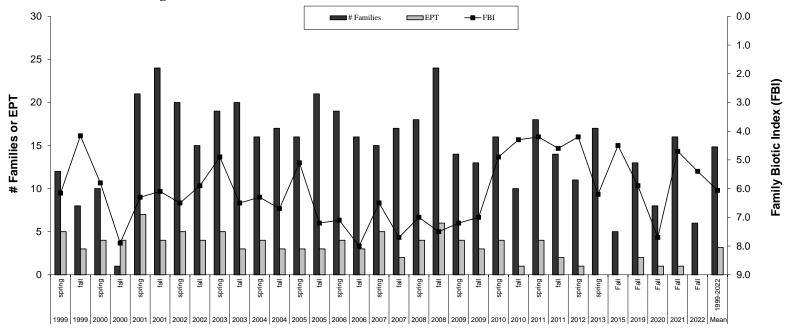
#### **Student Involvement**

8 Students in 2022, approximately 668 students since 1999

#### **Background**

Clearwater Creek originates in Bald Eagle Lake in northwest Ramsey County and flows northwest into Peltier Lake. The land use in the area is a mix of residential and agricultural, with some small commercial sites scattered throughout. Immediately surrounding the sampling site, land use is entirely residential and developed. The streambanks at the site are steep and actively eroding in spots. The streambed is gravelly or sandy with large sized boulders. The stream is 6-12 inches deep during baseflow conditions and approximately 10-15 feet wide. Clearwater Creek was monitored in 2012 (Centennial High School), 2013 (ACD), and in 2015 (4-H group). After a gap, a Forest Lake Area Learning Center class started monitoring the site (2019-2022).




#### Results

Overall, this stream has had average or slightly below average stream health based on the invertebrate data collected. Since 2009, the FBI score has been lower (indicating an increase in pollution-intolerant species & better stream health) than the majority of previous years. This apparent improvement seems driven by the increased dominance of the invertebrate community by the amphipod families Gammaridae and Hyallelidae, which have moderate tolerance values. Prior to 2009 these families had not been dominant and more EPT taxa were present. Average number of sensitive EPT taxa has decreased from approximately four per year prior to 2009 to rarely more than two thereafter. So, while FBI scores indicate an apparent improvement in stream health, the number of EPT taxa indicate the opposite. On the whole, the invertebrate community is indicative of a less healthy condition than before 2009. Even before 2009 the invertebrate community reflected moderate at best stream health.

#### **Discussion**

Clearwater Creek's biological community is probably limited by a combination of habitat, hydrology, and water chemistry factors. This creek has been highly modified and large sections have been developed into a straightened ditch. Clearwater Creek is listed as impaired for dissolved oxygen as well as fish and invertebrate biota. Bald Eagle Lake, which is impaired for nutrients and serves as the Creek's headwaters, may be contributing to the low oxygen levels in the creek. An alum treatment was implemented in Bald Eagle Lake in 2014 and 2016 to reduce phosphorus levels and may help reduce oxygen demand in Clearwater Creek.

#### **Summarized Biomonitoring Results for Clearwater Creek in Centerville**



## **Biomonitoring Data for Clearwater Creek in Centerville**

Data presented from the most recent monitored five years. Contact the ACD to request archived data.

| Year              | 2015       | 2019        | 2020        | 2021       | 2022       | Mean      |
|-------------------|------------|-------------|-------------|------------|------------|-----------|
| Season            | Fall       | Fall        | Fall        | Fall       | Fall       | 1999-2022 |
| FBI               | 4.5        | 5.9         | 7.7         | 4.7        | 5.4        | 6.1       |
| # Families        | 5          | 13          | 8           | 16         | 6          | 14.8      |
| EPT               | 0          | 2           | 1           | 1          | 0          | 3.2       |
| Date              | 31-Aug     | 10-Oct      | 7-Oct       | 25-Oct     | 14-Oct     |           |
| sampling by       | Anoka 4-H  | FLALC       | ACD         | ACD        | FLALC      |           |
| sampling method   | MH         | MH          | MH          | MH         | MH         |           |
| # individuals     | 152        | 133         | 255         | 191        | 113        |           |
| # replicates      | 1          | 1           | 1           | 1          | 1          |           |
| Dominant Family   | Gammaridae | Hyalellidae | Hyalellidae | Gammaridae | gammaridae |           |
| % Dominant Family | 65.7       | 36.1        | 90.2        | 74.3       | 69         |           |
| % Ephemeroptera   | 0          | 1.5         | 0.0         | 0.0        | 0          |           |
| % Trichoptera     | 0.0        | 26.3        | 0.4         | 1.6        | 0.0        |           |
| % Plecoptera      | 0.0        | 0.0         | 0.0         | 0.0        | 0.0        |           |
| % EPT             | 0          | 27.8        | 0.4         | 1.6        | 0          |           |

## Rice Creek

Highway 65, Rice Creek West Regional Trail Corridor, Fridley

#### **Monitored Since**

1999

#### **Student Involvement**

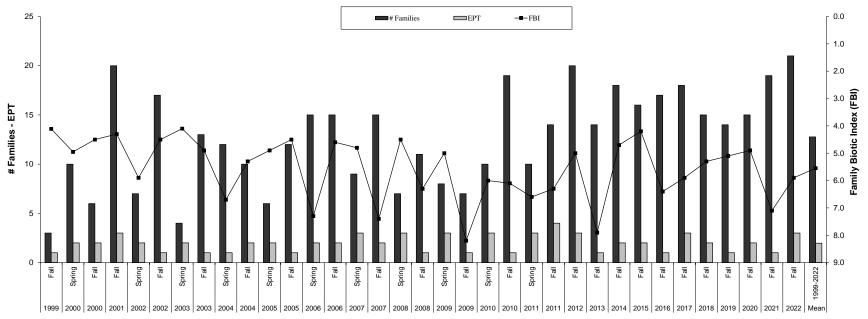
40 Students in 2022, approximately 1,400 students since 1999

#### **Background**

Rice Creek originates from Howard Lake in east central Anoka County and flows southwest through the Rice Creek Chain of Lakes, eventually reaching the Mississippi River. Sampling for invertebrates has been historically conducted in the Rice Creek West Regional Trail Corridor, which encompasses a large portion of the stream's riparian zone. The land around the sampling site is forested but outside of this wooded buffer, the watershed is highly urbanized and the creek receives stormwater runoff from a variety of urban sources. The streambed has a rocky bottom with pools and riffles.



#### **Results**


Totino Grace High School classes monitored this section of stream in the fall of 2022, facilitated by the Anoka Conservation District. At this site, Rice Creek has a macroinvertebrate community indicative of poor stream health. While the number of families discovered in 2022 was an increase from previous years and above the long-term average for Anoka County streams, most are generalist species that can tolerate polluted water conditions, with a FBI value of 5.9 (fairly poor). Gammaridae was the dominant family found in 2022, but the dominant family found in seven of the past nine years was Hydropshychidae, a generalist family. The number of EPT families present has been below the county average in all years but increased to 3 families in 2022. EPT are generally pollution-sensitive, but the caddisfly family Hydropsychidae, is an exception to that rule. This family thrives in relatively poor environmental conditions and was once again a primary family found in 2022.

#### **Discussion**

The poor macroinvertebrate community in Rice Creek is likely due to poor water quality and the flashy flows observed during storm events, not poor habitat conditions. Habitat at the sampling site and the surrounding area is good, in part because of habitat improvement projects implemented in the past. The creek has diverse characteristics, containing runs, riffles, and pools. The area immediately surrounding the stream is predominately a buckthorn forest, with paved walking trails. However, outside of this wooded corridor, the watershed is urbanized and storm water inputs are likely influencing the degraded water quality. During storms events, water levels in the creek can rise quickly. This portion of Rice Creek is impaired for both fish and invertebrate biota.



### Summarized Biomonitoring Results for Rice Creek at Hwy 65, Fridley



### Biomonitoring Data for Rice Creek at Hwy 65

Data presented from the most recent monitored five years. Contact the ACD to request archive

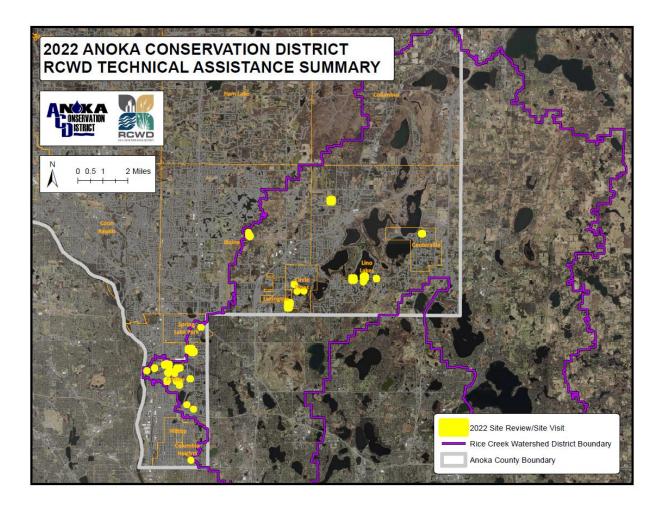
| Year              | 2018           | 2019           | 2020           | 2021           | 2022       | Mean      |
|-------------------|----------------|----------------|----------------|----------------|------------|-----------|
| Season            | Fall           | Fall           | Fall           | Fall           | Fall       | 1999-2022 |
| FBI               | 5.3            | 5.1            | 4.9            | 7.1            | 5.9        | 5.5       |
| Families          | 15             | 14             | 15             | 19             | 21         | 12.5      |
| PT                | 2              | 1              | 2              | 1              | 3          | 1.9       |
| ate               | 15-Oct-18      | 15-Oct-19      | 12-Oct-20      | 12-Oct-21      | 11-Oct-22  |           |
| ampled By         | TGHS           | TGHS           | TGHS           | TGHS           | TGHS       | <b>L</b>  |
| ampling Method    | MH             | MH             | MH             | MH             | MH         |           |
| Individuals       | 509            | 322            | 240            | 326            | 256        |           |
| Replicates        | 1              | 1              | 1              | 1              | 1          | - 23      |
| ominant Family    | Hydropsychidae | Hydropsychidae | Hydropsychidae | Hydropsychidae | Gammaridae |           |
| 6 Dominant Family | 24.6           | 48.4           | 63.8           | 32.2           | 24.6       |           |
| 6 Ephemeroptera   | 14.5           | 0              | 4.6            | 0              | 2          |           |
| 6 Trichoptera     | 24.6           | 48.4           | 63.8           | 5.8            | 23.4       |           |
| 6 Plecoptera      | 0              | 0              | 0              | 0              | 0          |           |
| % EPT             | 39.1           | 48.4           | 68.4           | 5.8            | 25.4       |           |

## Water Quality Grant Administration

**Description:** RCWD contracted ACD to provide technical assistance for the RCWD Water Quality

Grant Program. Tasks include landowner outreach and education, site reviews, site visits, project evaluations, Best Management Practices (BMP) design, cost-share application assistance, contractor selection assistance, construction oversight, long-

term project monitoring, and other services as needed.


**Purpose:** To assist property owners within the Rice Creek watershed with the design and

installation of water quality improvement BMPs.

**Results:** Formal property reviews/site visits were conducted at 31 sites throughout the Rice

Creek Watershed in Anoka County. Project types included; 16 rain gardens, 3 lakeshore stabilizations, 1 streambank stabilizations, and 11 backyard habitat projects. Below is a summary of technical assistance provided in 2022.

2022 Sites within the Rice Creek watershed at which ACD provided technical assistance



## Anoka County Water Resource Outreach Collaborative

**Partners:** ACD, Anoka County, WMO's, watershed districts, cities and townships

**Description:** The Anoka County Water Resources Outreach Collaborative (AWROC) is a

partnership formed in 2018 to implement a comprehensive water outreach and engagement program. Its purposes are to reduce duplication while improving the

cost effectiveness of public outreach about water resources.

**Purpose:** To inform community residents, businesses, staff, and decision-makers about issues

affecting local waterbodies and groundwater resources. To achieve behavioral changes that improve water quality and recruit people to install water quality

projects.

**Location:** County-wide

**Results:** Outreach included newsletter articles, social media, workshops, booths at community

events and more. A highlighted output in 2022 was a video titled "Our River

Connection." The video describes why watershed management is important and river

stewardship principles. A "part 2" of the video is expected in 2023-24 that

specifically addresses riverbank landowners, including topics of near shore habitat and erosion. Other previous videos in the series are "Our Lakeshore Connection" and "Our Groundwater Connection." All the videos are available on the Anoka

Conservation District YouTube channel.

